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The present article addresses the serial/parallel processing question at
both a theoretical and an empirical level. First, we review some general
distribution-free properties of parallel and serial models. Next, we derive
predictions for mean reaction times (RTs) for parallel models for both
unlimited and limited capacity conditions. We show that when processing
times differ across same and different comparisons and across spatial loca-
tions, serial and parallel models are identifiable at the level of mean RTs.
Data from two experiments, which include representative samples of such
widely used tasks as memory and visual search and same-different com-
parisons, clearly ruled out exhaustive models in favor of self-terminating
models. A self-terminating serial model fits mean RTs better than a fixed
limited capacity parallel model across both experiments and across two
levels of complexity of the two models.

The present article has two purposes:
first, to review general properties of parallel
and serial models with particular attention
to the capacity issue for parallel models;
and second, to develop and test explicit
classes of serial and parallel models whose
qualitative features capture the pattern of
reaction times (RTs) across conditions of a
comprehensive paradigm,

The capacity issue is a crucial one for
comparing serial and parallel models.
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Though a serial model is, by definition, a
limited capacity model (since at~ention or
processing effort is devoted to one item at a
time), parallel models with limitations on
capacity can produce mean RT predictions
that are indistinguishable from those for
serial models. Although these results have
caused some investigators to despair of ever
distinguishing parallel from serial models,
they can be distinguished, as we show be-
low, if same and different comparison rates
differ and serial position effects are ob-
served. Serial position effects can be ob-
tained when there is a preferred order of
processing in a serial model or when there is
a nonuniform distribution of attention
arross the potential set of comparisons in a
parallel model.

Previously, detailed predictions for paral-
lel limited capaci'ty models have not been
presented, except in general terms (e.g.,
Townsend, 1974). The reasons for this are
not hard to find. First, the equations
quickly become very complicated for all but
the simplest conditions, and second, it is
difficult to decide exactly how the number
of potential comparisons might limit capac-
ity. In the present article, we make the fol-
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lowing simplifying assumptions in deriving
parallel predictions for latency data: (a)
that intercompletion times are exponenti-
ally distributed, which makes the parallel
prediction equations expressible in closed
form, and (b) that capacity is divided by
the number of potential comparisons. As-
sumption b leads to what we call a fixed
limited capacity parallel model.

To test various classes of the serial and
parallel models, we collected RT data
within a paradigm including instances of
short-term memory search, visual search,
and simple, conjunctive, and disjunctive
same-different judgments. The general
pattern of RTs across conditions rejected
all exhaustive models (both parallel and
serial) in favor of self-terminating models.
Strong and consistent serial position effects
within given conditions permitted us to dis-
tinguish serial from limited capacity paral-
lel self-terminating models af a finer level
of analysis. Quantitative comparisons be-
tween the two classes of models showed that
a serial self-terminating model fit the data
better than a fixed limited capacity parallel
model.

Although the results of statistical tests
favor the serial model, we feel that this is
neither the most important result of our
reserch nor the last word on the parallel/
serial issue. Rather, we feel that the impor-
tant contributions of this article are heuris-
tic in illustrating how parallel models might
be developed, what aspects of data might
be used to narrow the field of potential
models, and what assumptions need to be
added to completely characterize a particu-
lar processing strategy.

The article is organized in the following
manner. First, we briefly review the empiri-
cal literature on the serial/parallel issue;
next, we review general properties of serial
and parallel models; finally, we describe the
design and results of the experimental tests
of the models.

Literature Review

An impressive array of experimental
paradigms employing reaction time have
been analyzed to find out whether subjects
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are employing parallel or serial comparison
strategies and whether the task is accom-
plished with a self-terminating or exhaus-
tive criterion. These include simple same-
different judgment tasks for pairs of
multi-dimensional stimuli presented simul-
taneously or successively (e.g., Bamber,
1969; Egeth, 1966; Snodgrass, 1972a),
visual search for one or several targets (e.g.,
Neisser, 1963a; Neisser, Novick, & Lazar,
1963; Atkinson, Holmgren, & Juola, 1969;
Townsend & Roos, 1973), short- and long-
term memory search (Atkinson & J uola,
1974; Sternberg, 1966, 1975), and conjunc-
tive and disjunctive same-different judg-
ment tasks (e.g., Briggs & Blaha, 1969;
Marcel, 1970; Nickerson, 1967; Snodgrass,
1972b; Taylor, 1976a).

Almost all of these tasks involve present-
ing some number, N, of stimuli to be stored
in memory and then presenting some num-
ber, M, of stimuli in a visual display and
asking the subject whether 1 . . . m of the
stimuli in the visual display "match" (usu-
ally, are identical to) 1 . . . n of the stimuli
in memory. Elsewhere (Snodgrass, 1972b)
these tasks have been designated memory
N: M tasks, in which N items are in mem-
ory and M items are in the visual display.

In this terminology, same-different tasks
for successively presented items are denoted
1: 1 because one item is in short-term mem-
ory and the second is in a visual display;
visual scanning experiments are denoted
1: M if a single item is being searched for
and N: M if more than a single itern is the
object of search; and memory scanning
experimen ts are denoted N: 1 because N
items are in short- or long-term memory
and a single item is in a visual display.

General Properties of Serial
and Parallel Models

Several issues that are relevant to the
serial/parallel issue will be taken up before
examining the characteristics of various
models of the comparison process. Town-
send has formalized some of the mathema-
tics and reasoning necessary for the study
of parallel and serial processes (see, e.g.,
Townsend, 1971, 1972, 1974, 1976a, 1976b).
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We treat in some detail various aspects of
the serial/parallel issue to set the stag-e for
what is to come. A general discussion of the
possible classes of serial and parallel models
is important in clarifying how predictions
were derived for the rather complex set of
conditions that were used.

Units of Analysis

Critial to speciflcation of the aspects of
processing in any cognitive setting is the
presumed unit of analysis (e.g.. Taylor,
1976b). It should be apparent that at some
level of analysis, items are dealt with in
parallel. That is, a line or curve is probably
analyzed in parallel, rather than being de-
composed into some tiner units such as
points in a Cartesian space. At the other
extreme, there are clearly cases in which
ite!ns are decomposed into components and
are dealt with in a serial fashion. For ex-
ample, visually presented sentences are
surely not dealt with in a completely paral-
lel fashion. Between these two extremes,
however, there might be cases in which the
type of processing may depend on the
nature of the material, the degree of learn-
ing, and the nature of the task (e.g-.,
Schneider & Shiffrin, 1977).

Obviously, the choice of the unit of analy-
sis will affect decisions about whether the
task is done in serial or in parallel. In simple
same-different tasks in which single items
are being compared, the unit of analysis
typically is taken to be the features of the
single items-either features of single letters
or digits, or dimensions of multidimensional
visual forms. In contrast, in visual scanning
or memory scanning experiments, the unit
of analysis is usually the entire sing-Ie item
(digits, letters, patterns, etc.).

Serial Versus Parallel Comparisons

The question of whether the mind can
deal with more than one thing at a time has
a very long history and was experimentally
studied via the span of apprehension. Im-
plicit in some early philosophizing about
the issue was the concept that although the
mind could deal with several items at OIW

-

time, there was a spread of attention across
them. This type of system, in which items
are processed in parallel but with a con-
comitant decrement in the degree of atten-
tion (or clari ty) that each can receive as
the number to be processed increases, is
known as a parallel limited capacity system.
The question of capacity is so closely linked
with the parallel-serial issue that both will
be considered together.

More attention has been given in the
literature to serial than to parallel models
for various kinds of tasks, primarily because
the prediction equations for parallel models
are difficult except in a few simple cases.
Two issues for parallel models are impor-
tant: One is the limited versus unlimited
capacity issue referred to above, and the
second is the form of the distribution of the
comparison times.

One simple model is that in which capac-
ity is unlimited and the comparison times
are constant and identical (deterministic)
for all items to be processed. In a situation
in which all comparisons must be completed
before a decision can be made, such a model
predicts that RT will remain constant as
the number of items in a visual or memory
display increase. Evidence for such a model
has been reported for a visual search task
by Egeth, Jonides, and Wall (1972). Yet,
stochastic (nondeterministic) models can
easily be found that also predict such flat
mean RT functions (e.g., Townsend, 1974,
p. 162).

When the comparison times are distrib-
uted exponentially, the comparisons are
independent, and the capacity is unlimited,
the time for exhaustive scanning of n items
increases approximately with log n (Christie
& Luce, 1956; Rapoport, 1959); and when
no particular distribution is assumed for the
comparison times but the independence as-
sumption is retained, an upper bound on
the maximum increase in RT can be deter-
mined (Gumbel, 1954).

Self-Terminating Versus Exhaustive
Comparisons

A self-terminating system is one in which
the search is terminated whenever it is logi-

....-
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cally possible, whereas an exhaustive systcm
is one in which all items arc compared re-
gardless of the logical possibili ty of stopping
prior to all n comparisons. However, even a
fundamentally self-terminating search may
logically need to be exhaustive, in the sense
that all n items need to be processed. For
example, if subjects are assumed to store
only positive set items in memory in a mem-
ory-scanning task, then for a self-terminat-
ing system the search is self-terminating on
positive trials hut exhaustivt: (in the sense
of requiring search through all items) on
negative trials. I t is possible, however, to
uuild models for item sets consisting of only
a few items (such as the digits 0-9) in which
both positive and negative items are stored
in memory, and suhjects self-terminate on
both positive and negative trials (Theios,
Smith, Haviland, Traupmann, &. Moy,
1973). Here we will refer to self-terminating
systems as those that terminate as soon as
it is logically possihle, whether that tenni-
nating point is after all n items are searched
or only a suhset of the n items is searched,
whereas exhaustive systems are t hose in
which all n items are always searched.

Logical StopPing Rules

In the following sections, we clescri be
simplified predictions for three logical stop-
piug rules for the following models: serial
self-terminating, Hcrial exhauHtive, parallel
self-terminating unlimi ted capaci ty, parallel
exhaustive unlimited capacity, parallel
self-terminating limi ted capaci ty, and
parallel exhaustive limited capacity. We do
not make the limited-.unlimit.ed capacity
distinction for serialll1odels. Plausihle serial
models are, almost hy delinition, limited
capacity systems, silwe they imply that
subjects can only deal with items one at a
time.

We consider predict ions for t he following
three stopping rules: (a) .'\11 of n must
finish, a stopping rule that i:, approprialf'
for certain situations in self-terminating

systems and is appropriale f(,r all Hitua t it,nH
for exhanstive systcms. (b) ()nt' particII1ar
element of II must fillish, which is appropri-
atc for self-terminating sy~.telll.; on positive
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trials. (c) Anyone of 11must finish. Slop-
ping Rule c is one that is not logically reo
quired in many experimental paradigms,
hut it is appropriate for one we shall con-
sider in detail later. One example of such a
stopping rule can he found in a task used by
Bamber (1969) in which subjects were pre-
sented with two strings of four letters that
could be completely identical or could differ
in one, two, three, or all four letters. The
case in which all four are different embodies
the situation in which, in a self-terminating
system, the suhject could stop when any
one of the n comparisons finishes. A stop-
ping rule intermediate between hand c is
any m of n must finish, where 111< n. For
simplicity we do not consider this inter..
mediate rule_

In addition, we consider predictions from
the models only for mean latencies. A num-
ber of other as~ects of the latency distrihu-
tions, such as the minimum and maximum
times, have been shown to be of importance
in distinguishing self-terminat.ing from ex-
haustive models (e.g., Sternberg, 1975);
however. we do not here consider thosc
aspects ohhe RT distributions. In addition,
it may be possible eventnally to distinguish
models on the basis of combined RT and
error rate information. However, most of
the situations that. we consider attempt to
keep error rates to a minimum, so we will
choose to ignore errors in the following
analyses. Although certain IIseful ~eneral-
izcd remarks may be made cOllcerning
speed--accuracy trade-offs (e.g., Pachclla,
1'>74), no detailed analyses on both RTs
and error rates can be performed in 1111'
absence of a well-specified 4uantitalivc
model. We view the latency characteristics
of the present models as important ill thei.
OWII right and also as propaedeutic to de-
velopment of a complete theory embracing
hoth types of information.

\Ve note that the latency predictions for
,he parallel models are based on the as-
sumption t hat comparison times are expo-
nelltially distrihuted, but the serial predic-
tions are distrihlltioll-fret:. It is possible to
generaliz!' parallel n::iults based on expo-
nential distributions 1\1other kincIsof com

pari~')l1 I.ime disl rilltHions «(:.g., Townsend,

---



334 JOAN GAY SNODGRASS AND JAMES T. TOWNSEND

Table 1
Reaction Time Predictions for Serial and Parallel Models for Three Stopping Rules

Note. T = mean time for one comparison; n = number of comparisons.

1976a; Townsend & Ashby, 1978). The
exponential models often yield behavior not
atypical of parallel models in general, and
they have the advantage of being mathe-
matically tractable.'

Table 1 presents latency predictions for
serial self-terminating and unlimited and
limited capacity parallel self-terminating
models for the three stopping rules. Predic-
tions for the corresponding exhaustive
models are always those for Stopping Rule
a, all of n must finish. The predictions are
expressed in terms of T, the mean time for
a single comparison, and n, the number of
comparisons being made. It may be noted
that for simplicity, the processing rates are
assumed equal across the item positions.
The behavior of the mean RT as a function
of n (e.g., increasing vs. decreasing; posi-
tively vs. negatively accelerated; etc.) is
nevertheless representative of the g-eneral
case.

Serial Models

All of n must finish. Clearly, if compar-
isons are made in a serial fashion, then all n
of them must be made with a total time nT.
If the serial model is exhaustive, so this
stopping rule is always followed, then the
prediction is that for both positive decisions
(the critical item i's in the memory or dis-
play set) and negative decisions (the critical
item is not in the set), one predicts that
positive and negative RT functions as a
function of n will be parallel (i.e., with the

same slope) as often observed 10 memory-
scanning studies.

One particular of n must finish. If serial
searches are self-terminating, then positive
RT functions would have half of the slope
of negatives, since only half of the items
must be searched on the average, whereas
on negative trials all items must be
searche<:l.

A ny one of n must finish. For serial self-
terminating search, only the first item need
be compared with the probe to constitute a
match, so the time would be T, independent
of n. Although no memory search paradigms
seem to have used this procedure, the fol-
lowing two examples might be provided:

I For example, pafallel unlimited capacity expo-
nential models with independent comparison times
predict negatively accelerated mean exhaustive re-
action time (RT) curves as n increases. It is straight-
forward to show that any parallel unlimited capacity
model with independent comparison times, irrespec-
tive of the distribution, predicts such negatively
accelerated mean RT functions of n. Let G(t) be the
comparison time distribution for each item, for all
values of n. Then the mean processing time for a
given n can be expressed

E(tln) = 1'" [1 - Gn(t)Jdt

and the second order difference as

f12E(tln) = 1'" [2Gn(t) - Gn+l(t) - Gn-'(t)Jdt,

which is readily seen to always be less than zero, thus
proving negative acceleration.

...,.......-.......---. .. ... ....---......-.--..

Mouel

Parallel-
Limited Limited

Unlimited fixed reallocatable
Stopping rule Serial capacity capacity capacity

All of n must finish (exhaustive) nT (log n) T (n log n) T nT
One particular of n must finish

(self-terminating) [(n + 1)/2J T T nT [(n + 1)/2J T
Anyone of n must finish T (l/n) T T T
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(a) Suppose all memory search items are
the same and the probe is positive (hcncc
it matches all items); (b) suppose items are
either digits or let ters, and the subject's
task is to decide whether the probe is a
member of that class. In both tasks a single
comparison provides the needed informa-
tion for both negative and positive matches.

Unlimited Capacity Parallel Models

The parallel predictions are based on the
assumption that comparison times are ex-
ponentially distributed and that all com-
parisons have the same rate parameter.
Although restricting our attention to ex-
ponential distributions limits the generality
of the parallel results, we can expect the
qualitative form of the parallel predictions
to he applicable to distributions of compari-
son times other than the exponential (see
Footnote 1). To discuss the predictions for
the parallel models, we first re view some
properties of exponential distributions.

1. For a single exponential distribution
of comparison times I, I(t) = ae "I, where
a > 0, (a constant), the mean is lla (and
corresponds to T), and the variance is l/a2.

2. If a particular comparison x, with
mean 11a, nlllst be completed and if the
exponential rate is independent of the num-
ber of potential comparisons, then the mean
time for that comparison to be completed
equals l/a (= 1') regardless of whether any
of the other comparisons have finished.
Thus, the prediction for Stopping Rule b
for unlimited capacity parallel models is
simply T. (Note that unlimited capacity in
a parallel model means that thc rate pa-
ramcter is unaffected by the numbcr of
poten tial comparisons.)

3. When a number of such exponential
distributions are samplcd simultaneously
(i.e., in a parallel system), we can takc ad-
van tagc of onc propert y of exponcnt ial d is-
tributions to deri\'c distributions of illter-
complction times, namely, that exponent ial
distributions havc no memory. That is,
given that by somc critical timc t,., a par-
ticular comparison x, with mean I/Il, has
not been completed, the mcan for that
comparison time as measured from time I,

--
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remains 1Ill. Thus, it is simple and will be
fruitful to consider the intercomPletion times
(e.g., Townsend, 1974) among completed
comparisons in making our predictions.

4. For Stopping Rule c, the time for the
first of two comparisons to finish, who!;\:
rate parameters areal and a2, is I/(al + (2).
Stopping Rule c describes a horse race on
an infinitely wide track, in which the time
for the fastest horse is the crucial variahle.
As long as the running times have nonzero
variance, increasing the number of horses
(or comparisons) in the race leads to a de-
crease in the time of the fastest horse (or
comparison). In particular, if the times
have exponential distributions and the
rate parameters are all equal (1Ia; = l/a),
the time for the first to finish is I/(na), or
since l/a = T, (1/n)T.

5. From 4, we can derive the predictions
for Stopping Rule a in the case of unlimited
capacity. We do this by considering inter-
completion times. When all n comparisons
must finish, the time for the first one to
finish is linn; the time for the second, 1/
(11 - l)a; and the time for the mth, ].1
(n -m + l)a. Thus the time for all to

finish may be found by summing the inter-
completion times, or

I/na + 1(n. l)a

+ 1I (n - 2)a . . . + 1la,
or

Ila(lln + I/(n - 1) X Iln - 2)
+... +1/1)~llalogn.

Hence, since IIII = T, Stopping Rule a
prediction is (log n)1'.2

Limited Capacity Parallel Models

There ,HC several reasons for considering
limited capacity parallel models as reason-

.---

2 Actually t he appropriate approximation is

I ':" I )
L ... ':::,' -. (logNn + .6),

ft i I Z a

where 10!;N is the natural logarithm. In the present
inst.ance WI' arc mainly concerned with the hasic

form of the fl:nclion (e.g., slope, etc.) and hence
safely ignore the extra constant.
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able candidates for search processes. First,
the notion that attention might be distrib-
utee!.across a number of items, even though
all of them are processed simultaneously,
has a long history (see Neisser, 1963b).

Second, predictions of unlimited capacity
parallel search models are often patently
falsified by extant data. They predict that
for memory scanning, positive responses
either do not increase with n (for self-
terminating scans) or increase with the log
of n (for exhaustive scans). Negative re-
sponses are always predicted to increase
with the log of n because search is always
exhaustive. However, good evidence exists
for the linearity, or near-linearity, of RT
with set size for both positive and negative
responses in the memory-scanning litera-
ture.

On the other hand, there is at least one
situation in which evidence for unlimited
capacity parallel search has been obtained,
namely, visual search through sets of re-
dundant targets. For a fixed search set, in-
creasing the number of redundant targets
decreases both error rate (Estes & Taylor,
1966) and RT (van der Heijden & Menck-
enberg, 1974), a result consistent with
either serial or parallel visual search. How-
ever, increasing the number of redundant
targets when the search set is concomitantly
increased (and contains only targets) also
decreases RT (van der Heijden, 1975), a
result apparently compatible only with a
parallel unlimited capacity process (or at
least one that is less limited than the models
we next consider).

However, for much of the extant data
that show approximately linear increases in
RT with increases either in memory set size
or display set size, more reasonable parallel
models would be of limited capacity in
which a fixed capacity is divided across the
items that must be processed. In lieu of any
detailed information on the allocation of
attention, it seems reasonable to assume
that this fixed capacity is uniformly dis-
tributed across the possible comparisons.
This means that the comparison rates are
inversely related to the number of com-
parisons; for example, if 1/a is the time for
a single comparison for a single item, then

n/a is the mean time for a single compari-
son among n items. Thus, all of the predic-
tions for parallel unlimited capacity com-
parisons in Table 1 simply get multiplied
by n for the limited fixed capacity predic-
tions.

These predictions are based on the as-
sumption that the rate parameter remains
constant throughout the series of compari-
sons, that is, the basic rate parameter is af-
fected only by the total number of potential
comparisons present at the beginning of the
comparison process, and completion of one
comparison does not thereby free attention
so that it can be reallocated to the remain-
ing items. This fixed capacity assumption
implies that the item comparison times are
stochasticall y independen t.

Another alternative is to assume that as
comparisons are completed, attention may
be reallocated to the remaining items, and
thus, as fewer and fewer items remain to be
processed, the rate of processing for any
one speeds up in proportion to the number
remaining. This parallel model we term the
reallocatablecapacity model. It is.mathemat-
ically equivalent to (and hence experi-
mentally indistinguishable from) an expo-
nential serial model with equal preferences
on all processing orders (Townsend, 1972,
1974), and it has been proposed by Atkin-
son et al. (1969). However, it will be useful
to derive its predictions from a parallel
point of view. .

Consider Stopping Rule a in which all n
must finish. The time to finish the first com-
parison is n X 1/na. That is, the unlimited
capacity mean latency for the first compari-
son, 1/na, is multiplied by the total number
of comparisons simultaneously processed,
n; for the second, it is (n - 1) X 1/
(n - 1)a; and so on. So the total time for
all to finishis

n/na + (n - 1)/(n - 1)a + . . . + l/a,
or

n(1/a) = nT

Another way of seeing the logic behind
this result is to attach a total capacity of a
to the system. The first term is constructed
by noting that this capacity a is divided

~- ,..-... 0" ' ~..~.'.....__.....\_. ._-
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equally among each of the n items; thus,
each individual rate is a/n, and the total
rate for the first intercompletion time is
n X a/n = a. The first intercompletion
time itself is, of course, just the reciprocal
of the latter quantity, l/a. The analysis
proceeds likewise for each succeeding inter-
completion time (e.g., on the second there
are n - 1 items sharing the capacity de-
noted by a). Thus we see that by the real-
location of attention rule, the time for any
particular comparison in a series to finish
is simply l/a for an exhaustive system.

The self-terminating rule (Stopping Rule
b) predicts that the time between any two
completion times, regardless of order of
finish, is l/a = T. This constant intercom-
pletion time is multiplied by the average
number of comparisons that have to be
made before the "critical" item is found.
But as in the serial case, the processes must
go halfway through the list on the average,
resulting again in the time (n + 1)/2 X T.
For Stopping Rule c, the time for the first
item to finish is simply T.

As Table 1 illustrates, the mean RT pre-
dictions for the parallel reallocatable atten-
tion model are identical to those from the
serial model. In addition, these models are
actually equivalent in their distribution on
finishing times and thus cannot be empiri-
cally tested against one another.

Experimental Tests

To provide rigorous experimental tests of
the various classes of models, we selected
exemplary stimulus-response configura-
tions from among the prevailing experi-
mental paradigms. Because we felt it de-
sirable to test models across, rather than
within, specific paradigms, we constructed
conditions in which only one or two items
were in short-term memory and one or two
in a visual display. By varying the decision
rules, we varied the number of comparisons
needed to reach a decision.

The first experiment used matrix pat-
terns of regular design as stimuli, whereas
the second 'experiment used letters. Both
experiments used the same eight compari-
son tasks, although they differed in details
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Table 2
The Eight Experimental Conditions, Where the
Top Stimulus is Presented First and the
Bottom is Presented Second

RIGHT

LEFT

RIGHT

LEFT

SAME

SAME

DlFF

SAME

SAME

DlFF

Note. The convention here is to denote a single
matching stimulus as "I" and two matching stimuli
as "I" and "2," although in the experimental pro-
cedure, the particular matching stimuli were coun-
terbalanced across the five possible stimuli. DlFF
= different.

of stimulus presentation. The results of
these experiments will be used for two pur-
poses: first, to test whether subjects behave
in a self-terminating or exhaustive manner
at a qualitative level, and second, to illu-
strate in some detail how quantitative pre-
dictions for serial and parallel models with
exponentially distributed comparison times
are derived.

Table 2 presents the set of eight tasks
used in the two experiments. The numbers
refer to identical or different stimuli, and

--

A B

[ J SAME [/IJ
[ J DIFF

[112J

C D

[211J
RIGHT nn

P/J LEFT [ n

E F

[112J
SAME [I/J

[/IJ SAME [2IIJ

[/]J DlFF
[213J

G H

[ n
SAME en

Dn SAME Dn
[ n DlFF D ;J

D iJ DlFF
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the correct response is shown to the righ t
of each pair. The top stimulus in each group
is presented first, and the bottom stimulus
is presented shortly thereafter, remaining
in view until the subject responds. Thus,
some representation of the first stimulus
resides in short-term memory, whereas some
representation of the second stimulus re-
sides in the perceptual store; so according
to our previous terminology, all tasks are
n: m, where both nand m take on values of
either 1 or 2.

Condition A is a simple same-different
task; Conditions B, C, and Dare match-
location tasks; Condition E is a visual scan
task with two items in the visual display;
Condition F is a memory scan task with two
items in short-term memory; ('ondition C
is a conjunctive same.-differen t task; and
Condition H is a disjunctive same-different
task.

For Conditions B, C. and D, a match is
always present and the subject's task is to
indicate the location of the match, hence
our designation of these conditions as
match-location tasks. These conditions
represen t, for self-terminating models,
Stopping Rule c in which the completion of
any comparison is sufficient to make a de-
cision. For all three conditions it is always
the case that an item on the right or left
matches the single item (for B and C) or
one of the two items (for D), although B
and C differ by whether the single item was
pres~mted first or second. Thus, finding a
mismatch between corresponding positions
is as informative as finding a match. Non-
super-capacity exhaustive models all pre-
dict that as the number of possible com-
parisons increases, RT will increase; so
comparisons of Conditions B, C, and D
with A are diagnostic in choosing between
self-terminating and reasonable exhaustive
models. Furthermore, an unlimited capac-
ity self-terminating parallel model predicts
that as the number of possible comparisons
increases for Stopping Rule c, RT will de-
crease; so, again, comparisons between B,
C, D, and A are diagnostic in deciding be-
tween limited and unlimited capacity paral-
lel models. Finally, both self-terminating
serial and self-terminating fixed capacity

~'-- ,~--- -'............'-~

parallel models predict no difference be-
tween Conditions B, C. D, and A.

Conditions E and F represent, respec-
tively, visual search and memory search
conditions for which n = 2. The two condi-
tions are logically identical, with the ex-
ception that Condition E has one item in
memory and two in the display (1: 2),
whereas Condition F has two items in mem-
ory and one in the display (2: 1). So on
positive, or same, trials self-terminating
models predict that Stopping Rule b will be
used (i.e., the subject can terminate only
when he has completed the positive match),
whereas on different trials all models pre-
dict that Stopping Rule a will be used (i.e.,
all comparisons must be completed before
responding). Because under a self-terminat-
ing model, both E and F require more com-
parisons than Conditions A-D, both serial
and parallel fixed-capacity self-terminating
models predict that these conditions should
take longer than Conditions A-D. Furt"er-
more, since same decisions can be made
after an average of only one and one-half
comparisons, whereas different decisions re-
quire two comparisons, same decisions
should be faster than different decisions as
long as same and different rates do not
differ too much.

Conditions G and H represent, respec-
tively, conjunctive same-different and dis-
junctive same-different tasks. On Condition
G same trials, all models predict that Stop-
ping Rule a will be used-All matches must
be completed before a decision can be made.
For different trials, on the other hand, self-
terminating models predict that a modified
version of Stopping Rule b will be used; as
soon as two mismatches are completed-
those between the odd item (i.e., 3) in the
display and both items in the memory set-H-
the decision is made.

On Condition H same trials, on the
other hand (which are physically but not
logically identical to Condition G different
trials), a single match hetween an item in
the display and an item in memory is suffi-
cient (Stopping Rule h), whereas for H
different trials, all mismatches must be

completed (Stopping Rule a) before a de-
cision can be made.
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Two experiments were run to test the
predictions of the various models. Both ex-
periments included all eight conditions de-
picted in Table 2. However, Experiment 1
used visual patterns as stimuli (simple
matrix patterns composed of black and
white squares), whereas Experiment 2 used
single letters as stimuli. Experiment 1 has
already been reported in detail elsewhere
(Snodgrass, 1972b); however, no attempt
was made to fit a parallel model to those
data at that time.

Method

Subjects

Five subjects served in each experiment; one in
Experiment 1 and two in Experiment 2 were female.
All subjects were right-handed and were paid for
their participation.

:Stimuli

In Experiment I, stimuli were five matrix patterns
of black-and-white squares, rated as simple in previ-
ous experiments and chosen to be highly discrimi-
nable from one another. In Experiment 2, stimuli
were the five uppercase letters 0, Q, R, '1', and Z.

Apparatus

In Experiment I, the subject was seated in a dark-
ened room and viewed the patterns (projected as
slides on a screen) through the one-way mirror open-
ing into an adjacent room where the experimenter
operated the projection and recording equipment.
The slides were projected by three Kodak Carousel
slide projectors. The middle projector presented the
single stimulus, and the two flanking projectors were
used for paired stimuli. A pair of stimuli subtended
approximately 60 of visual angle in the horizontal
direction.

The stimulus presentations were actuated manu-
ally, so the stimulus durations, interstimulus inter-
val, and intertrial interval were only approximate.
The first stimulus was exposed for approximately
2! sec; the interstimulus interval was approximately
2! sec, and the intertrial interval was approximately
6 sec. The second stimulus remained exposed until
about 1 sec after the subject had responded.

The release of a slide in one of the projectors used
for presenting the second stimulus actuated a micro-
switch that started a Hunter Klockounter. The sub-
ject's press of one of two standard telegraph keys
stopped the clock, and RT was recorded to the near-
est msec. A light on the experimenter's console and
one on the desk at which the suhject was seated in-
dicated which key had been pressed.
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In Experiment 2, stimuli were presented via a
Scientific Prototype automatic three-channel tachis-
toscope (Model GB) equipped with a binocular
zoom lens (Kalimar K 7012). The stimuli were photo-
graphed from letters mounted on white carels
(Instantype L-15l0) and were made into 35-mm
black-and-white slides. Single letters appeared in
the middle of the slide, and letter pairs were sepa-
rated by 1 in (.32 cm). The five single letters were
uppercase D, Q, R, '1', and Z, and letter pairs were
all 20 possible ordered pairs of the five. When pro-
jected in the tachistoscope, a single letter subtended
between 1.750 and 3.50 of visual angle horizontally
and 3.50 vertically, and a pair subtended between
5.50 and 90 horizontally.

The stimulus durations, interstimulus interval,
and intertrial interval were controlled automatically
by three time-interval generators. The first stimulus
was presented for 2 sec, followed by a 2! sec blank
lighted field, followed by the second stimulus, which
was exposed for 2 sec. A dark blank field followed
the end of the second stimulus for 3 sec and served
as the intertrial interval.

The onset of the second stimulus started an elec-
tronic counter (Montsanto Counter-Timer No.
101b), and a press of one of two response keys by the
subject stopped the timer and displayed the RT to
the nearest msec. A light on the experimenter's con-
sole displayed which response key the subject had
pushed.

The subject was seated at a table and viewed the
stimuli through the binocular zO()m lens, which had
rubber eye cups. Each eyepiece was focused inde-
pendently by each subject before each session. The
experimenter was seated behind the tachistoscope
in the same room with the subject and started and
stopped the stimulus presentations, recorded RTs,
and informed the subject when he or she had made
an error. Automatic changers in both fields advanced
slide trays (Sawyers Rototray) containing the se-
quence of stimuli for each session.

Design and Procedure

Other than the procedural differences due to
different apparatus outlined in the Apparatus sec-
tion, both experiments used identical designs and
procedures. Each subject in both experiments par-
ticipated in 3 practice and 18 experimental sessions.
A complete cycle of the eight experimental condi-
tions was completed in three sessions. Thus each
subject experienced each condition once during
practice sessions and six times during experimental
sessions.

The conditions were divided into three sets to
minimize interference. The three conditions requir-
ing location information-B, C, and D-were run
in one session, A and G in a second, and E, F, and H
in a third. The order in which the three sets of condi-
tions were run and the order of conditions within a
particular session were completely counterbalanced
across the 18 experimental sessions and were the
same for each subject. Because we wished to equalize
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Figure 1. Mean correct reaction times by session for each of the two experiments. (A, n, C, D, E,
F, G, H refer to conditions in both experiments.)

the number of possible trial types within a condi-
tion, the more complex conditions required more
trials per session than the simpll'r conditions.
Specifically, a particular session for conditions A, B,
C, E, and F consisted of ,10 trials, for D and II of 60
trials, and for G of 80 trials.

For each condition in each session, the number of
SAMEand DIFFERENTor RIGHTand LEFT trials was
equal, all single and paired stimuli occurred equally
often, and the spatial locations of matching stimuli
were counterbalanced across locations. For Experi-
ment 1 a single basic sequence for each condition
was constructed subject to the above constraints
and then was permuted in three ways to yield four
distinct sequences. For Experiment 2 seven different
random sequences for each condition were con-
structed by computer and were used for the seven
presentations of each condition in a random order,
which was generally the same for each subject.

A typical session lasted approximately 1 hr. Prior
to running the experimental trials for each condi-
tion, 10 practice trials, selected randomly from the
experimental sequence, were run to familiarize the
subject with the condition. In addition, each subject
was provided with schematic diagrams of all condi-
tions to which he or she could refer during the
experiment.

Subjects were paid $1.50 for participating in each
session and, in addition, won money for fast rc-
sponses and were penalized for errors. Because the
experiment.al procedure was relatively complex, no
counterbalancing of hand with responses was at-
tempted. Instead, each subject used the apparently

.-

natural mapping of right hand for a RIGHT/SAMEre-
sponse and left.hand for a LEH/DIFFERENT response.

Results

Learning Effects

Figure 1 presents RTs for each condition
plottcd as a function of sessions for both ex-
periments. The RTs are averages of both
responses. Both experimen ts show similar
patterns of results.

First, fairly large decreases in RT took
place across sessions, and the decrease was
larger for the more complex conditions such
as G and H than for the simpler conditions
such as A, B, C, and D. Whereas RTs for alI
conditions appear to be asymptotic by the
fourth session for Experiment 1, RTs for
Condition H in Experiment 2, which is
clearly the most. difficult condi tion in this
experiment, show steady and regular de-
creases, which appear not to be asymptotic
even by the sixth session.

Second, in bot.h experiments Conditions
A, B, C. and D are virtually indistinguish-
ahle from one another and show little de-
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crease with sessions. Similarly, for both
experiments Conditions E and F are virtu-
ally indistinguishable, although there is
some decrease in RTs with sessions.

Finally, the main difference in RTs be-
tween the two experiments, aside from the
lack of an asymptote for Condition H in
Experiment 2, is that Condition G appears
to have been much more difficult in Experi-
ment 1 than it was in Experiment 2, in
which the RTs for Condition C approach
the RTs for Conditions E and F.

It seemed useful to fit models only to
asymptotic data. The last three sessions
from Experiment t are clearly asymptotic,
so those three sessions were combined and
the resulting data was used in preliminary
analyses.

To determine whether the last three
sessions for Experiment 2 were asymptotic,
we performed a three-way repeated-mea-
sures analysis of variance on the data for the
last three sessions, with experimental condi-
tion, response (where RIGHT and SAMEare
considered as one class and LEFT and DIF-
FERENT as the second), and session as the
factors. Both the main effect of condition
and of response were highly significant,
whereas the main effect of session was not.
For condition, F(i, 28) = 23.34, P < .ot.
For response, F(t, 4) = 74.82, P < .ot.
The Condition X Response interaction was
sig-nificant, F(7, 21\) = 9.55, P < .Ot, hut
none of the other in teractions, Condi tion
X Session, Response X Session, or Con-
dition X Responsl: X Session, was sig-
nificant. 'I:hus the data averaged across
subjects for the last three sessions of Ex-
periment 2 may he considered at least
statistically asymptotic, and these will 1)('
used in preliminary analyses of the various
models.

Asymptotic results. Table 3 presents
mean RTs and error rates for the last three
sessions of both experiments. In general,
error rates are acceptably low, although
errors tend to increase from simpler to more
complex conditions (as do RTs). Although
RTs for the letter study are considerably
lower than those for the pattern study, due
largely to the different apparatus used,
there is a remarkable silllilarity between
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Tablc 3
Corre.ctReacti01l Times (RY's) a1ld };rror Rain

for the Last Three Sessi01ls of
Experiments 1 and 2

.--------
Note. OIFF = differcnt.

the RTs obtained in the two studies. The
Pearson product-moment correlation be-
tween the 16 pairs of RTs from the two
studies is .89 (p < .OOt); the correlation is
higher across the DIFFERENT or LEFT re-
sponses than across the SAME or RIGHT
responses (r = .97 and .87, respectively).

In general, RIGHTor SAMERTs are faster
than their corresponding LEFTor DIFFERENT
RTs. This does not seem to be completely
attributable to a difference between the
overt physical responses, however, since the
magnitude of the difference tends to be
greater for SAM1':--))1FFERENT than for
RIGIIT-I.EFT n:sponses. For Experimen t I,

Experiment I Experiment 1.
(patterns) (lettcrs)

------"...

% %
Condition 1vI RT errors MRT error-;

-----..
A

SAME 833 1.33 299 LOll
DII'I' 869 l.OO 356 3..\:\

II
RIGilT 8.32 .67 325 l.on
LFT 869 1.00 ,,41 1.67

C
RIGHT 813 .67 320 1.67
LEFT 832 2.33 347 U.\

D
RIGHT 8,,5 J.J I 339 .22
LEFT 874 2.44 353 2.44

E
SAME 917 5.00 358 2.67
DI!'l' 942 1.00 408 3.00

F
SAME 886 6.67 351 4.00
DIFF 943 2.33 408 3.67

G
SAME 1,035 6.33 368 2..>3
011'1' 1,043 6.67 429 2.J 7

II
SAME 1,025 6.89 401 5.78
Dll'l' 1,133 3.33 485 5.1 I
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the SAME-DIFFERENTdifference is .J.7 msec,
compared to 32 msec for the RIGHT-LEFT
difference; the corresponding differences
for Experiment 2 are 62 and 19 msec,
respectively.

Stages in Fitting the Models to the
Asymptotic Data Base

As we pointed out in the introduction,
there are large classes of serial and parallel
models possible for any given data base.
The approach taken here is to fit models to
the present data in several stages. We first
used the qualitative pattern of empirical
results to determine which broad classes of
models could not be rejected and then com-
pared these models according to their
quantitative fits.

As noted previom;ly, comparisons of RTs
from the first four conditions in the experi-
mental paradigm can distinguish self-ter-
minating from exhaustive models, and un-
limited capacity from limited capacity
parallel models. To summarize, the RT pat-
terns predicted by four broad classes of
models for Conditions A-D arc as follows:
serial exhaustive, A < B = (' = 0; serial
self-terminating, A = B = c: = 0; un-
limited capacity parallel self-terminating,
A > B = C = 0; limited capacity paral-
lel self-terminating, A = B = C = D.

The lack of an increase in RT as the num-
ber of possible comparisons increases (from
A to B, C, and D) leads us to a self-termi-
nating model, which in the parallel case must
be of limited capacity, since an unlimited
capacity model predicts a decrease in RT as
the number of critical comparisons in-
creases. Accordingly, we restrict our quan-
titative predictions to self-terminatinK
limited capacity models.

Spatial position effects. Before develop-
ing the mathematical apparatus necessary
to test quantitative differences between the
appropriate serial and parallel models, we
first examine the fine structure of the results
to determine what they say about the
strategies adopted by subjects to search for
matches or mismatches. One of the advan-
tages of using conditions for which vcry few
potential matching locations exist is the

Table 4
AIean Correct Reaction Times for the Variolls
Matching Locations Indicated in the Diagram

for Conditions E, F, G, and H, Based on the
Last Three Sessions Only

Condition
Config-
uration

Experi- Experi-
ment 1 ment 2

E

SAME [I\J

[211JSAMI,

F

SAME
[II2J

[21IJ
SAME

G

SAME [: n

DiJ
[: n
n :J
DiJ
[in

SAME

DIFF

DIFF

DIFF

DlFF

H

SAME [: n
D :J

DiJ

[in

SAME

SAME

SAME

Note. DIFF = different.

956 371

882 345

905 362

867 340

980 357

1,109 378

1,052 431

1,060 435

1,059 422

989 424

1,054 396

962 385

1,038 409

1,065 410

possibility of analyzing these strategies in
detail. The implication of spatial position
effects for a serial model is that subjects
have a preferred order of search and for a
parallel model tbat attention is not allo-
cated uniformly across the possible match-
inK positions.

The conditions for which spatial position
effects can occur are the more complex Con-
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ditions E, F, G, and H. Table 4 presen ts
mean RTs for the last three sessions of both
experiments for various matching locations
of Conditions E, 1', G, and H. With some
exceptions (G DIFF and H SAMEtrials), the
two sets of data show similar spatial order
effects (the Pearson product-moment cor-
relation between the 14 pairs of RTs is .74,
P < .01). For Conditions E and 1', SAME
RTs are faster when the matching stimulus
is on the right. For Condition G, SAMERTs
are faster when matching stimuli occupy
corresponding spatial positions. The high
correlation between the two sets of data in-
dicates that the basic pattern of results is
robust across stimuli and subjects and sugc
gests that the same basic processes are in-
volved in the two experiments.

Implications for a serial model. If a serial
self-terminating model is assumed, these
results suggest that (a) the comparison pro-
cess begins with the right item in both
memory and perceptual stores; (b) corre-
sponding spatial positions are compared
first, followed by diagonal positions if nec-
essary; and (c) the memory store is
searched for every display item. Conclu-
sion a accounts for results of E and F. Con-
clusion b accounts for results of G SAME,
since matches for corresponding positions

[~ ;] will be found more quickly than for

diagonal positions D i). Conclusions b
and c account for the fact that H SAMEtrials

of type [; ~] are faster than the other
types. However, without some assumption
about the interaction of items, these as-
sumptions predict that for G DIl'l', the con-

.

[
1 2

] [
2 1

]figuratIOn 1 3 shoulll be equal to 1 3 '

since the subject will begin (or tend to be-
gin) with Item 3, search through the two
items in memory, and fail to find a match
on either, so he or she can make his or her
DIFFERENTresponse on that basis. Although
these assumptions will not account for all
the data, they provide some framework for
building a model.

implications for a parallel model. If a
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parallel self-terminating model is assumed,
these results suggest that rates for compar-
ing memory with display items depend on
spatial location and are faster for right pairs
than left pairs of items and slowest for
items on the diagonal. These conclusions
correspond to Conclusions a and b in the
serial model. There appears to be no paral-
lel conclusion analogous to c, that the
memory store is searched first.

General imPlications for both classes of
models. Predictions for both classes of
models assume that there is some residual
latency, tR and tl. for right-hand and Idt-
hand responses, respectively, that repre-
sents the sum of stimulus input, response
organization, and response output time.
We assume that the time to perform the
relevant comparisons is added to this resid-
ual time without interacting with any of
its components. For both models, the fol-
lowing assumptions are explicitly made in
deriving the prediction equations. First, we
assume that the subject keeps track of both
the location of matching (or mismatching)
items and whether they were matches
.(same items) or mi"matches (differen t
items). Second, we assume that the subject
can control his or her attention so that
classified items can be eliminated from fur-
ther consideration. We illustrate how these
assumptions are applied by deriving the
serial equation for the G SAME trials of the

form D i) for a simplified serial modd

that assumes the subject always begins
comparisons with items on the right (ulti-
mately, the probability of beginning with
the right position will become a parameter
in the model). Recall that to come to a
same decision, two matches must be found.
Because items in spatially identical posi-
tions are compared first, the first compari-
son is the differen t comparison 2: 1, and the
second is the same comparison 1: 1. At this
point the subject eliminates items in the 1: 1
comparison from further consideration and
remembers that one match has been made.
The only remaining comparison is 2: 2,
leading to the second match and a decision
of same. In the next sections we present in
detail the assumptions of the two models
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and derive their predictions in detail. Be-
cause spatial position effects are large and
consistent for the more complex conditions,

we attempt lo predict latencies for each dis-
tinct configuration in these conditions.
rather than merely predicting either overall

Table 5
Predicted AIWIl Lalcllcies Jor the Saial SclJ- Tamil/atill/!, AIodd

Nole. DIFF = different. In. II. = residuallalencies for right and left responses. IIs, lid = mean latencies for
same and different comparisons. P = probahility of starting comparisons on the left.

--

Condition Configuration Predicted RT
------

A

SAME [ : J ( II I/{ -+- lis

DIFF r J ( 2) IL + lid

B,C,O

RIGHT [/IJ [\IJ [ :J ( J) In + POld) + (I - P)lls

[ I J [I 2J[I 2J ( 4) II, + P(lls) + (I - P)lldLEFT I 2 I I .\

E,F

SAM;
[111J ['12J ( 5) III + P(lls) + (I - 1')(1/5 + lid)

SAME [/IJ [\ IJ ( 6) I/{-+-P(lis + lid) -I- (I -- 1')1/5

DIFF [213J[\IJ ( 7) I L + 2/d

G

SAME [: n ( II) In + 2/5

SAME Dn ( 9) I/{ + 2/5 + lid

[I 2J (10) II. + P(lis + lid) + (I - P)21dDIFF 1 .i

[1 IJ (11) II. + P(2Id) + (I - P)(lls + IldlDlFF 3 I

DIFF [. n (11) IL + P(2Id) + (I - P)(lls + 21d)

DlFF D J (13) IL + 1'(1 Is + 21d) + 0 - P)21d

H

SAME [: n (14) In + P(lls) + (I - 1')(1/5 + 21d)

SAME D J (15) In + 1'(115+ 21d) + (I - 1')(1/5)

SAME Dn (16) 1/1 + P(1ls + 31d) + (I - P)(l/s + lid)

[2lJ (17) In + 1'(1Is + lid) + (1 - P)(l/s + 31d)SAME I J

[I 2J (IX) IL + 41dDlFF J 4 ----
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mean RTs or mean RTs for each response.
Separating conditions by their spatial con-
figurations increases the degrees of freedom
in fitting the models, and also provides a
more rigorous comparison of the two Illodels.

Serial Self- TerminatinJ!. !Ifodel

Assumptions

(a) Search is through all melllory items
for each display item until a match is made
or the memory store is exhausted . (b) ('0111-
parisons are first made for ('orresponding
spatial locations, then for diagonal loca-
tions. (c) A counter keeps track of the num-
ber and spatial locations of matches, which
arc eliminated from further searches.

There arc five parameters: tit = residual
latency for right response; t" = residual
latency for left response; t /s = mean ex-
ponential latency for same comparison;
l/d = mean exponential latmcy f()r dif-
ferent comparison; P = probability of
starting comparisons on left. (Not!, that ill
the simplified model described above, we
set P = n.)

Defining the mean comparison latencies
as l/s and l/d means that the exponential
rate parameters are s for same and d for
different comparisons. Although the serial
equations could be simplified by defining
the mean comparison times as, for example,
Sand 0, the use of the present notation pre-
serves a parallel structure between the serial
and parallel predictions.

Additionally, in these equations we haw
not disti nguished between the match and
mismatch rates as a function of spatial posi-
tion. A more complex version of the model
is also tested, which separately estimates
left, right, and diagonal match and mis-
match rates.

Equations for mean latencies are derived
for 18 conditions. Some conditions (H, C,
and D; E and F) have identical predicted
latencies, whereas other condi tions, such as
G SAME and DIFFERENT and H SAME, arc
separated in to separatl' configurations re-
quiring different numbl~rs of compariso1ls
because of search order effects. Tallie:; pre-
sents the prediction equatiolls for the
serial sclf-ternlinating model.
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Limited Fixed Capacity Parallel
Self- T erminatinJ!. M odeZ

Assumptions

(<1)In tercompletion times are exponen ti-
ally distributed. (b) Exponential ratl'
parameters remain constant regardl('ss of
the stage of processing and, hence, regard-
less of the number of elements remaining to
be processed. Thus, capacity is not realloca-
table during a trial, and processing of ele-
ments is stochastically independent. (b)
The model is basically fixed or ('onstall t
capacity. That is, the rate parameters dl'-
pend on the total possible number n of
comparisons (one for A, two for 13, C. D,
E, and F, and four for G and H), such that
the basil' rate parameter is divided by n.
However. to simplify the notation, we II'!
the basic rate parameters Sa, Sl" dft, and d"
be those for n = 2. Hence those rate param-
eters are used for Conditions B, C. 0, E, and
F, whereas for Condition A, in which only a
single comparison is made, the rate param-
eter is doubled by adding SRand Sl, for same
comparisons and adding da 'and (iI, for dif-
feren t com parisons.

There are six parameters: ta, and tL. de-
fined as for the serial model; l/sa = mean
exponential latency for same comparison on
right; l/SL = mean exponential latency for
same comparison on left; 1/da = mean ex-
ponential latency for different comparison
on right; 1/dl. = mean exponential latency
for different comparison on left.

Note that for the parallel model, we do
distinguish processing rates for right and
left positions. This distinction must be
made because of the strong spatial position
effects, and it corresponds to the serial
model assumption of a preferred processing
order. In addition, in a more complex ver-
sion of the model that is also tested, rate
parameters for diagonal comparisons arc
distinguished from right and left compari-
son ra tes.

Table 6 presents an abbreviated version
of the prediction equations for the parallel
model. In the equations for Conditions
B-F, the spatial position distinctions be-
tW('l'1Iratl's arc rl'tained. However, the pre-
diction equations for Conditions G and H
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Table 6
Predicted Mean Latencies for the Parallel Self- Terminating Fixed Capacity 1Ilodel

Condition Configuration Predicted RT

A

[ J
1

SAME (I) IR + -, where SA = SR + SL
SA

[ J
1

DlFF (2) IL + ' where dA = dR + dL

a,C,D

[/1] [\1] D :]
1

RIGHT (3) IR+
SR L

[112J[I/J[n
1

LEFT (4) IL+
SL R

E,F

[/2][\2]
1

SAME (5) In + -
SL

[2\] [\ IJ
1

SAME (6) IR + --
SR

DIFF [2\][\3] (7) tL + dn dL + PR () + PL (), where Pn

dn dL
=-'PL=-

dR + dL' dR + dL

G

c:n (1 I) (I 1SAME
' IR + PI 2s' + 2d' :- s' + 2d' + P. 2s' + 2d' + s' + 2d'

D i] 1) (1 1 1 I)+s' + d' + P. 2s' + 2d' + s' + 2d' + s' + d' + 7

(I 1 1) (I+ p. 2s' + 2d' + 2s' + d' + s' + d' + P6 2s' + 2d'

1 . 1 1) p( 1 1+ 2s'+ d' + s' + d' + 7 + · 2s' + 2d' + 2s' + d'

1 1)+ 2s' + 7

DlFF c:n g: tR + PI (3d' 5' + 3') + (P. + P. + P.) (3d' s'

Dn
(12),

1) (1 1 1) (I(13) +2d' + s' + P6 3d' + s' + 3d' + 2d' + p. 3d'+ 5'

D i] 1 I) (1 1 I)+ 2d'+ 5'+ 2d' + P7 3d'+ 5'+ 2d'+ 5'+ d' + s'

[in (I 1 1 1) (1+ Ps 3d' + 5' + 3d' + 2d' + d' + PI 3d' + 5'

1 1 1) (1 1+ 2d'+ s' + 2d' + d' + PIG 3d' + 5' + 2d'+ 5'

1 1)+ d' + 5' + d'
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Table 6 (continued)

Condition Configuration ---..---
H

SAME [~ n D ~]

D n [~n

[
I 2

J3 4

I
(14), 11/ + .-;
(15), 5
(16),
(17)

I I 1 I

(18) II. + ;id' + :1"d'+ 2d' + d'
DlFF

347

Predicted RT

----------

Note. DIFF = different. 11/,II. = residual latencies CorriKht am" left responses. l/s//, t/s I: = mean latencies
Corsame comparisons on right and left. l/dl/, I/d,. = mean latencies Cordifferent comparisonson right and
left. Ij.f' = 4/(5L + 51/);lid' = 4/(dl. + dll)'

are so complex that the spatial position dis-
tinctions are dropped in the equatiolls as
presented, although tlH:Y were retained in
fitting the mode\.

First, note that the prediction equations
for A arc similar to those for 13, C, and D.
Recall that for a iixed capacity parallel
model, we halve the processillg rate (and
hence double the comparison time) each
time the number of comparisons is doubled
(as in going from A to 13,C. or D). Tlms, the
comparison rate for 1\, SAand dA equals the
sum of the left and right comparison rates
for Conditions 13,C, and D. Since the latter
three conditions can logically terminate
with one comparison, the comparison time
is a "racc" between same and different conl-

parisons, with the winning comparison an-
nouncing a decision regardless of whidl
comparison it is.

For E and F SAME,the only comparison of
interest is the same comparisoll ; hence Wl'
can ignore the fmishing time of the differ-
ent comparison in computing latency. For
E and F IHFF, on the otl!!'r hand, both com-
parisons must finish before a decision can
be made. The latency with which the lirst
comparison finishes, regardless of what it
is, is l/(dR + dL). The lalency of the IT-
maining comparison, t /dll or t /dl., II1l1sl \,t'
added to thc lall'lll'Y of II\(' hrst tinishing.
The probability thai till' right comparison
finishes first, PR, is dn/(dlt + dd. The
probability that tIll' left comparison finislll's
lirst, Pl., is dl./(dlt + d..). Thlls till' tolal
latency is given hy Equalion 7 in Tahle 6.

For Conditions (; and II, fOllr ('oillpari.

sons arc possible, so by the rule for fixed
capacity models, we halve each of the rate
parameters. The new rate parameters an:
denoted Sill, S'I., d' It, and eI/L. Diagonal
comparison rates arc equal to the average of
the right and left rates. For example,

diD = d'i. -t d/lt2-~-

Both G SAMEand G DIFF conditions arc
logically self-terminating, therefore their
prediction equations become complex be-
cause each distinguishable processing order
must be rcprescnted in the equations.

For C SAMEdecisions four comparisons,
of which two are same and two are different,
arc possible. The subject is able to respond
as soon as the two same comparisons hav('
linished. There arc six distinguishable fin-
ishing orders of two same and two different
comparisons that contain the necessary and
sufhcien t pair of same comparisons. Al-
though the particular same or differen t
comparisons that finish in a particular ordi-
nal position are relevant, we ignore the
spatial position distinctions for clarity and
definc 5' as the rate for either same compari-
son and d' as the rate for either different
('0 IIIpanson.

\Ve remind the reader, again, that dis-
t ingu ishable orders of comparisons m list
be separately evaluated because the inter-
compll'tion tillle!> depend on the number of
comparisons st ill to be completed. 1t should
1)1' ('llIph;lsized that this dcpendence on
I1I1,n!wr of ITnlaining comparisons follows
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from the logical structure of the task and
does not imply any change in the individual
comparison rates as processing continues.
As pointed out above, the latter are fixed.

In Equations 8 and 9 in Table 6 (which
are identical because spatial position differ-
ences are ignored), the probabilities refer
to the probabilities of particular finishing
orders; P I is the probabili ty that both s
comparisons finish first, P2 the probability
of a finishing order sds, . . . and P6 the
probability of the finishing order ddss. By
observing which term is omitted in each
succeeding term in the equations and by
keeping in mind the fact that two same
comparisons are necessary, the complete
equation can be constructed.

For example, the equations for PI and
P 6are as follows:

2s' s'
PI = 2s' + 2d' X s' + 2d';

2d' d' 2s' s'
P6 = '" , , "'_II X 2s' + d' X 2s' X ;;.

The first term in PI is the probability that
either s comparison finishes first, and the
second term is the probability that the re-
maining s comparison finishes next. The
first two terms in P 6 refer to the correspond-
ing probabilities for d comparisons, and the
remaining two terms (both equal to 1.0 in
this simplified version) refer to the probabil-
ities that the remaining s comparisons
finish.

For G DIFF trials four comparisons, of
which three are different and one is same,
are possible. However, in contrast to the
case for G SAMEtrials, there are a variety
of combinations of particular comparisons
that can terminate the search and lead to a
correct decision. To illustrate, we consider

the particular case of D ;1 An observer
can respond DlFFafter compl~tion of any of
the following three sets of two comparisons
(the first item is in memory and the second
in the display): a same 1: 1and the different
2 :3 ; the differen t 2 :3 and the differen t 1:3 ;
the different 2:3 and the different 2: 1. It is
important to note that it is not sufficient to
complete the same comparison and any

other different comparison; for example,
the pair 1: 1 and 2: 1 will not yield sufficient
information for a different decision. Simi-
larly, any two different comparisons are not
sufficient, as in the pair 2: 1 and 1: 3. Thus,
although there are three possible different
comparisons, one of them, which we will
denote dl, is crucial and must be completed
along with either the same comparison or
any other different comparison.

In Equations 10-13 in Table 6 (which
are shown as identical equations because
the differences in spatial processing rates
have not been included there), PI gives the
probability that the first two comparisons
finished are sd.. P2 that the order is dls,
and P3 and P4 that two differents finish
first, including the critical one. P'-P7 de-
note the probabilities that dl finishes in
third position, and PS-PIO, the probabilities
that dl finishes in fourth position. By ex-
amining the predicted intercompletion
times and noting which comparison rate
has been deleted as comparisons are com-
pleted, it is possible to infer the particular
order postulated. For example, Ps refers to
the probability of the two orders sd2d3dl or
sd3d2dl, given by

s' 2d' d' d'
Ps = 3d' + s' X 3d' X 2d' X d'

For H SAMEtrials the only comparison
leading to a correct decision is the single
same comparison; all of the different com-
parisons are irrelevan t. Since the decision is
self-terminating on the same comparison,
the additional comparison time is simply
l/s'. For H DlFFtrials all four different com-
parisons must finish before the subject can
make his or her decision. Hence this is a
logically exhaustive task, and the prediction
is as shown in Table 6.

Tests oj the Models

The two classes of models were fit to in-
dividual subjects' data. To identify asymp-
totic data for individual subjects, mean RTs
across sessions were plotted separately for
each subject, and the asymptote was deter-
mined for each by inspection. The data that
were fit by each model were the 18 RTs

---
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Table 7
Serial and Parallel Self-Terminat£ng Parameter Estimates for Experiment 1 (Patterns)

No.
Subject sessions

2

3

4

5

2

3

4

5

Parameters

tR tL l/s l/sR l/sL l/sD l/d l/dR l/dL l/dD P

Serial

3 559 733 286
598 694 348 o

.27
89 .57

107
89 250 296

3 679 732 148 106 .31
590 620 365 40 97 333 35 78 .66

713 777 182 115 .21
615 693 183 310 146 121 221 100 .16

660 717 170 117 .34
625 681 203 204 142 152 143 104 .39

690 786 160 59 .26
616 679 93 275 104 25 236 42 .21

4

2

2

Parallel

3 754 817
771 825

774 800
774 797

86 85
92 104 75

78 106
95 167

106 190
76 132 72 95

74 127
73 124 95

3

4 841 841
843 839

83 127
80 123 102

95 120
123 108 101

2 773 793
778 791

86 112
115 109 92

58 55
54 72 58

77 129
67 118 95

60 86
61 87 56

2 804 827
804 828

Note. L = left, R = right, D = diagonal, t = residual response time, s = same comparison rate, d = differ-
ent comparison rate, P = probability of starting on left. The first row lists parameter estimates for the 5-
parameter version (serial) or 6-parameter version (parallel), and the second row lists parameter estimates for
the 9-parameter version (serial) or 8-parameter version (parallel)..df = 13. b df = 9. .df = 12. d df = 10. ·P > .05.

whose prediction equations are shown in The function minimizing subroutine
Tables 5 and 6 for those asymptotic sessions. STEPIT (Chandler, 1959) was used to find

Two versions of each model were fit to the best-fitting parameter values. The func-
these data; the serial self-terminating model tion that was minimized was the chi-square,
could have either five or nine parameters, defined as
and the parallel limited fixed capacity self-
terminating model could have either six or
eight parameters. The different number of
parameters was determined by whether
same and different comparison rates were
distinguished by spatial position for the
serial model and whether diagonal compari-
son rates were estimated separately for the
parallel model.

-- --

where AI is the observed mean RT; II-is the
theoretical mean predicted from the model;
u2 is the theoretical variance; and N is the
number of observations on which the ob-
served mean is based.

The theoretical variance was calculated
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Table 8

Serial and Parallel Self-Terminating Parameter l~stimales for Experimelll 2 (Letters)

No.
Subject sessions

ParilJllctcrs

In /1. lis l/sft \/Sl. l/sl> I/d I/dll l/dL l/du P

__ R____

4

Serial

206 365 152
206 255 17

2 5 346 ]53 IS
258 277 ()

3 232 244 29
176 197 36

187 26

156 25

\09 19

4 5 259 267 -12
206 215 26 132 I)

5 3 185 253 lib
100 177 97 n6 84

4 .347 387
343 38:i

24
31

2 351 376
.351 374

59
52

5

3 251 265
247 261

26
32

4 5 42
54

286 300
278 294

5 256 297
251 294

68
76

3

Parallel

5]
59 44

29
28 41

30
36 41

39
46 46

77
85 64

40

55

41

57

71

45
.13

16 .12

x'

133"
39b

91"
39b

20"
6b.

179-
29b

35"
12b.

277c
267d

2.34"
217d

30"
19d

267c
236d

60"
5.3d

Note. L = left, R = right, D = diagonal, t = residual response time, s = same comparison rate, d = differ-
ent comparison rate, P = probability of starting on Idt. The first row lists parameter estimates for the
5-parameter version (serial) or 6-parameter version (parallel), and the second row lists parameter estimates
for the 9-parameter version (serial) or 8-paramcter version (parallel).
"d! = 13. bd! = 9. cd! = 12. ddf = 10. ·P > .05.

as follows. The theoretical mean RT is as-
sumed to be the sum of a base time (In or
td plus the sum of the exponentially dis-
tributed comparison times. The distribution
of the base times was assumed to follow a
gamma distribution with IOOstages, so its
standard deviation is cstimatl'd as IW}{Iof
the estimated mean base time. The varianCl'
of the comparison times is based on the as-
sumption of exponentially distributed com-
parison times and is equal. to I/a% for a
single comparison. The variance of the total
time is the sum of the two variances.

The advantage of defining the chi-squan'

195

39
.55

32 .21

in this manner is that it defines the sum of
squared z scores and, as such, follows a true
chi-square distribution. In contrast, the
chi-square statistic that uses the empirical
variance in the denominator is the sum of
squared I scores, and it is not clear how
closely that chi-square statistic follows a
true chi-square distribution. An additional
advantage of defining chi-square in this
manner is that it makes the serial parame-
ter estimation procedure partially depen-
dent on the assumption of exponential dis-
tributions. That is, in predicting mean
latl'ncies for serial models, no restriction

156

44
.45

23 .25104

51
.51

35 .26140

51
.35

52 .23193

38
58

47.
40 35

35
59

52
46 32

32
49

40
25 20

36
78

64
38 37

72
64 61

60
77



COMPARING PARALLEL AND SERIAL MODELS

was imposed by the exponential assump-
tion, in contrast to the parallel predictions.
The theoretical variance estimates, in con-
trast, are influenced by the exponential as-
sumption for both serial and parallel models
and, hence, will affect both the parameter
estimates and the goodness-of-fit estimate.3

Tables 7 and 8 present the estimated
parameters and chi-square values for each
subject for Experiments 1 and 2, respec-
tively. For the serial five-parameter model,
we do not distinguish between same com-
parisons on the right and left, since the
parameter P can account for some of the
serial position effects that are observed. In
contrast, the parallel six-parameter model
does not separately estimate the diagonal
comparison rates. Rather, the diagonal rate
was taken to be the average of the right and
left rates.

For both Experiment 1 and Experiment
2, the serial self-terminating model fits the
data considerably better than the parallel
fixed capacity self-terminating model. For
both models, the residual latency for right
or same judgments (ta) is estimated to be
less than for left or different judgments (iL),
with two minor exceptions for the parallel
model for Experimen t 1. The serial model
for patterns consistently estimates same
comparison times (1/s) as longer than dif-
ferent comparison times (l/d), whereas the
parallel model for both experiments and the
serial model for letters shows no consistent
relationship between same and different
comparison times.

As expected, the probability of starting
the comparison on the left (P) for the serial
model is generally estimated as less than
.5, with two exceptions for each of the two
experiments. Also as expected, the parallel
model predicts comparison times on the
right to be shorter than comparison times
on the left, particularly for Experiment I,
in which spatial position effects were most
apparent.

Somewhat surprisingly, the serial nine-
parameter model shows even larger differ-
ences between right and left comparison
times. The magnitude of this difference is
correlated with the value of P: For Experi-
ment I, in which right comparison times are

--- --
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sometimes shorter and sometimes longer
than left comparison times, the correlation
between the difference between the right
and left comparison times (1/Sa - l/s..)
and Pis .98 for same comparisons and .95
for different comparisons. For Experiment
2, in which left comparison times are always
estimated as longer than right comparison
times, the correlation is. 78 for sames and. 72
for differents. This analysis suggests that
the preferred side (the side on which a sub-
jectmore often began processing) also
evidenced a faster processing speed than
the non preferred side, whether it was the
right or left side. Put another way, the
parameter P is unable to absorb all of the
spatial position effects; comparison rate
differences are also required.

The finding that same comparisons take
longer than different comparisons seems to
be compatible with some recent notions put
forth by Krueger (1978), although in some
contexts it is the same comparisons that are
faster (e.g., see Bamber, 1969; Townsend
& Roos, 1973; Taylor, 1976a).

The serial model showed substantial
changes in parameter estimates from the
five- to nine-parameter versions. When
combined with the considerable improve-
ment in fit, this suggests that the more
complex model is capturing structure in the
data unaccounted for by the simpler ver-'
sion. In contrast, the parallel model showed
less alteration in either its parameter values
or in its fits from the six- to eight-parameter
versions. Thus, overall, the parallel model
seems to be incapable of appropriately
modeling the patterns of RT, whether in its
simpler or more complex form.

Both models show the largest deviations
between predicted and observed RTs for
the more complex conditions (particularly
G and H), although the particular condi-
tions on which they fail differ. Larger devia-
tions on G and H are in part a consequence
of the fact that those conditions are broken

3 We also carried out the model fitting by defining
x' the usual way, with the empirical variance in the
denominator, and found no substantive changes
either in the pattern of parameter estimates or in the
conclusions about which model fit better.
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down in to differen t spat ial configura t ions
and, thus, arc based on fewer observations
than the simpler conditions. Becausc' tlH'
chi-square is weighted by the numlwr of ob-
servations in each condition, deviations ()t'-
tween predicted and ohserved RTs an'
weighted more heavily for the simpler con-
ditions than for the more wmplex, and
hence the parameters are adjusted to tit the
simpler conditions in prefen'nl'l' to the more
complex conditions.

Since the models do not make the same
predictions about mean latencies, it is dear
that the serial and parallel models compared
here arc identifiably different, primarily be-
cause of the introduction of spatial position
effects. Although how they difTer in predict-
ing lakncies is difficult to see at the IeVI'Iof
the formulas, an idea of how dilfc'n'lHTs in
prediction can come about can be gained
from examining the equations of Tables S
and 6. For example, Equations .3and 4 sum
to equal Equation 1 + Equation 2 in 1111'
simpler serial model, but not in the parallel
1I10dei. Such differences, on a more subtle
level, occur in the more compk'x conditions.

For example, the parallel model shows
the largest failures in accounting for fast

RTs in the G SAME configuration [~ ~l

compared to the slower RTs in the configu-

ration [; i1 For the parallel model to suc-

cessfully predict faster times for the former
than for tIw latter configuration, it must
estimate diagonal comparison times as
longer than nondiagonal comparison times.
Yet other conditions demand that the diag-
onal times be shorter, and they arc usually
estimated to be intl,rt1ll'diate to or smaller

than the right and left matching tinll's (see
Tables 7 and 8). In contrast, the serial model
rather naturally accounts for this difkn'I1C('
by its assumption thaI corrl'sponding
spatial positions arl~ compan'd lirsl. None-
thdess, bot h models underestimate till'
diff('renn's between the two types of (;
SAME trials, even though the Sl'rial mo(1<-1
fares better.

In contrast, the sl'rial model has dilii-
culty predicting the pattern of C IliFF tim('s.

._._-

:\5 shown in Table 4, Ihe C; f)(F!' configura-

I ion [~ .~] is typically faster than the C
. .

[
1 2

] I
.

I
f)IFF conlJgurallon 1 3 ,yet t. Ie serla pre-

diction equations Crable 5, Equation to
versus Equat.ion 13) predict the opposite
ordering regardless of the parameter values.

:\Ithough the serial model fits better than
the parallel model, it can still be rejected as
a complete account of subjects' processing
slralq~il's: Of tll(' 10 estimates obtailH'd
with the complex version, only 31were not
significant at the .05 level. On the other
hand, as Estes (1975) among others has
noted, a sufficiently powerful experiment
would reject all models, since no model of
human information processing could he ('x-
peeled to capture all of the rich complexity
of human beha viol'. The power of a statistical
t('sl inlTeas('s with the number of observa-

tions, and it is largely up to scientifi(. intui-
tion as to the evaluation of a fit relative to
Ihe sample size. It is prohably fair to say
that the present experiments provided a
reasonable challenge to mathematical
models in terms of power and diversity of
('xperimental conditions. One reasonahle
way to evaluate a model of human informa-
tion processing is to compare it with a
plausihle alternative model whose under-
lying assumptions differ, as we have done
here_

Discussion

In the past, mat hematical serial models
hav(' often been confiJ1('d 10 those assuming
a fixed processing order and invariant pro-
cl'ssing times on the various clemen ts.
:Vlatlwmatical parallel models of any vari-
ety have been rare. On(' of the purposes of
the present. artick has been to explicate
some of the mathematical structure of
para lid and serial models that can be em-
ployed to n'present various psychological
nol ions and to show how parallel and serial
lIIodels can be developed -in a natural way
for a g-iven l'xlwrillll'ntal context. Within
this approach 50nH' nonparamctric predic-
t ions mad(' by fairly largl' dasscs of parallel
and serialmodcls were rlerivl'd, with special

-_._---
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atten tion to comparisons betwecn self- characterized by a serial self-terminating:
terminating versus exhaustivc processing search and a faster automatic processing i!'
rules and the limited versus unlimited ca- charact<,rized by a parallel unlimited cap-
pacity issu<,. Two experiments strongly aeity search. \Vhich strategy is adopted by
pointed to self-terminating processing, a subject is thought to be dependent on
whether serial or parallel, and then sup- such factors as practice and constant versus
ported a plausible serial model against a variable mapping between stimuli and fI:-
plausible parallel model. sponses. However, such a switch from ;'\

We have not, of course, tested all paral- sl'rial to a parallel processing strategy im-
lei against all serial models. Such a para- plies a disrretl" qualitative change in pro-
digm is not availablt" although the parallel-- cessing, rather than a quantitative changl'
serial testing paradigm (PST) is capable of more typically attributed to effects of prac-
separating reasonably large classes of such tice. I t may be more in keeping with cIassi-
models (Townsend, Note 1; Townsend & cal views of changes in skill levels to pro-
Snodgrass, Note 2).4 The prl'sent models pose that controlled processing is character-
an' distinctive in several respects and are, ized by a parallel but limited capacity
as the preseut findings indicate, experi- search proCl'SS," whereas the automatic
mentally discriminable. One important dif- mode rdleds an increase in capacity of the
fcrence springs from the independence (and system toward an unlimited capacity
hence, nonreallocatability) of processiJlg in parallel system. This second view would
the parallel model. This nonn.'allocatable - hold that the ultimate nature of the pro-
property implies that the intcrcompletion cessing docs not change, only its quantita-
times tend to lengthen as processing pro- tive: parameters.
gresses, rather than staying the same over-
all as in standard serial and parallel models -----
with complete reallocation. That is, as the
number of potential comparisons de(Te;ISes,
the average intercomplction time increases
as a consequence of the exponential process.
Thus, later stages add more tinll' to the RT
than do the earlier stages. Another distinc-
tion is associated with the assumption that
difTerent comparisons consume a different
amount of time, on the average, than do
same comparisons (Townsend, 1976b, pp.
34--41). Finally, the large number of ex-
perimental conditions used here hl'l»s to
provide a more rigorous test to any model.

Why, when parallel and serial models can J
givl' such similar accounts of data, do Wl' .
think it important to distinguish them?
First, because our theoretical understand-
ing of underlying prc><:essesmight then be 2.
better advanced, and second, because there
are certain data in the literature Ihat might
be better UfHkrstood if one model were to

be prd(~rred.
To give a single but important ('xam»Ie,

ShifTrin and Schneider (1(77) and Schneider

and Shiffrin (1977) have recently proposed 4
a dichotomy of processing strategies in .
which a slower con troll(.d processing is
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· It has recently become clear that problems as-
sociated with parallel-serial model equivalence ex-
tend to more general domains than those simply
based on exponential intercompletion times (Town-
send, 1976a; Vorberg, Note 3). However, the two
main distinctive aspects of the present models, paral-
lel nonreallocatability and different rates for same
and different comparisons, have immediate analogies
in the general case that effectively prevent parallel-
serial equivalence (Townsend & Ashby, Note 4).
Townsend (1976a) and Vorberg (Note 3) do not
consider these distinguishing aspects.
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